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Abstract
SLq(2) at primitive odd roots of unity q� = 1 is studied as a quantum
cover of the complex rotation group SO(3, C), in terms of the associated
Hopf algebras of (quantum) polynomial functions. We work out the
irreducible corepresentations, the decomposition of their tensor products and a
coquasitriangular structure, with the associated braiding (or statistics). As an
example, the case � = 3 is discussed in detail.

PACS numbers: 02.20.Uw, 02.10.Hh, 02.40.Gh

1. Introduction

As is well known, the twofold spin covering Z2 → Spin(2) → SO(2) is not universal and
there are other (nontrivial) coverings with kernel Zn or Z = π1(SO(2)) (for the universal one).
They are responsible for features such as the fractional or continuous spin and the associated
anyonic statistics (see, e.g., [15, 30]). In dimension 3 (or greater) π1(SO(3)) = Z2 and the spin
covering Z2 → Spin(3) → SO(3) is universal; hence, the only (projective) representations
are of half-integer spin (in addition to those of integer spin which are bona fide representations
of SO(3)). The quantum groups offer a possibility of refining this classification. There is
indeed a candidate for such a cover, the quantum group SLq(2) at the roots of unity [5].
The case of the third root q = e

2π i
3 has been worked out quite extensively mainly in terms

of the quantum universal enveloping algebra Uq(sl(2)) (cf [6, 18] and references therein)
with the perspective to link to the Connes’ algebra for the standard model. Also the Hopf
algebra A(SLq(2)) of ‘polynomials on SLq(2)’ at odd roots of unity q� = 1 has been studied.
We adopt this ‘quantum function’ point of view since it is better suited to capture topological
properties such as quantum (finite) covers, which have to be introduced by hand when working
in the universal enveloping algebra language. In section 2, after recalling the essentials on
A(SLq(2)), we present the coverings of Spin(3, C) and SO(3, C).

The main point we are interested in this paper is to study further this new quantum
symmetry and the braiding (or statistics) of its corepresentations. The labelling of irreducible
corepresentations refines the notion of spin. On the dual level, the irreducible representations
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of Uq(sl(2)) at roots of unity are well known and the peculiar decomposition of their tensor
products has been studied, e.g., in [1, 3, 19, 27]. They are not of immediate use for us since
the dual pairing between A(SLq(2)) and Uq(sl(2)) degenerates at roots of unity. Actually
it descends to a (nondegenerate) duality between certain finite-dimensional quotients A(F)

and Ūq of these Hopf algebras. The irreducible representations of Ūq are also known [17]
and by the duality they correspond to irreducible corepresentations of A(F), but this is not
tantamount to those of A(SLq(2)). There exists another Hopf algebra of divided powers
[20, 21], or a version of it due to [12], which is dual to A(SLq(2)) [10, 11]. Thus the
irreducible corepresentations of A(SLq(2)) should be in correspondence with the irreducible
representations of divided powers Hopf algebra, which are known. This reasoning requires
however some algebraic subtleties,which we would like to avoid. For the sake of the physicists’
community, in section 3 we provide a direct computational proof of the irreducibility. The
first nontrivial case � = 3 is discussed in subsection 3.1, where we study the decomposition
of tensor products of the irreducible corepresentations of A(SLq(2)) and the question if
it is possible to build the fundamental (spin 1/2) corepresentation out of three ‘fractional’
corepresentations.

As far as the braiding is concerned, it is associated with a coquasitriangular structure. In
section 4 we show that the coquasitriangular structure obtained from the standard universal R
matrix associated with Uq(sl(2)) leads to a fairly exotic braiding, which however is consistent
with the Bose–Fermi statistics of the usual (half)integer spin corepresentations. As the first
nontrivial example, the braiding in the case � = 3 is discussed in detail in subsection 4.1.
Section 5 contains final remarks and conclusions.

2. Preliminaries

We start by recalling the basic definitions and our notational conventions.

2.1. The quantum group SLq(2)

Recall that for C � q �= 0, A(SLq(2)) is the unital free algebra generated by a, b, c, d over C

modulo the ideal generated by the commutation relations

ab = qba ac = qca bd = qdb

bc = cb cd = qdc ad − da = (q − q−1)bc

and by the q-determinant relation ad − qbc = 1. The Hopf algebra structure is given by the
following comultiplication �, counit ε, and antipode S defined on the generators (arranged as
a 2 × 2 matrix) by

�

(
a b

c d

)
=

(
a b

c d

)
⊗

(
a b

c d

)

ε

(
a b

c d

)
=

(
1 0
0 1

)
S

(
a b

c d

)
=

(
d −q−1b

−qc a

) (1)

where on the rhs of the first equation the ‘line by columns’ tensor product is understood.
As a complex vector space, A(SLq(2)) has a basis aibjck with i, j, k ∈ N and bicjdk with
i, j ∈ N, k ∈ Z+. (We denote Z+ = {1, 2, 3, . . .} and N = {0, 1, 2, . . .}.)
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2.2. Finite quantum subgroups F and F̂

From now on, unless stated differently, we set the parameter q to be a (primitive) �th root
of unity λ = e

2π i
� , for odd � � 3. We introduce two finite-dimensional Hopf algebras of

‘functions on finite quantum subgroups’ F and F̂ of SLq(2), needed in the following.
The Hopf algebra A(F) is defined as the quotient Hopf algebra of A(SLq(2)) modulo the

ideal generated by the relations

a� = 1 = d� b� = 0 = c�. (2)

Let πF denote the canonical projection, and t̃ := πF (t).
We give now some information on F (see [7, 8] for the case � = 3).

Proposition 2.1. A(F) satisfies the following properties:

(i) as a complex vector space A(F) is �3-dimensional and its basis can be chosen as ãpb̃r c̃s ,
where p, r, s ∈ {0, 1, . . . , � − 1}.

(ii) A(F) has a faithful representation �

�(ã) = J ⊗ 1� ⊗ 1� �(b̃) = Q ⊗ N ⊗ 1� �(c̃) = Q ⊗ 1� ⊗ N (3)

where for i, j ∈ {1, 2, . . . , �}

Ji,j =
{

1 if i = j + 1 mod �

0 otherwise

Qi,j =
{
q−i if i = j

0 otherwise
Ni,j =

{
1 if i = j + 1
0 otherwise.

(4)

(iii) F has the ‘reduced’ quantum plane as a quantum homogeneous space, i.e. the algebra
generated by x and y modulo the ideal generated by the relations xy = qyx, x� = 1 and
y� = 1 (isomorphic to Mat(�, C)) is an A(F)-comodule algebra.

(iv) F has a classical subgroup, defined as the group of characters of A(F), which is easily
seen to be isomorphic to Z�. Namely, for i ∈ {1, 2, . . . , �} we have χi defined by their
action on the generators as χi(ã) = qi, χi(b̃) = 0, χi(c̃) = 0 and χi(d̃) = q−i . The
Hopf algebra A(Z�) appears as a quotient of A(F) by the ideal generated by b̃, c̃ (which
is also the intersection of the kernels of the characters).

Quite similarly, we define A(F̂ ) as the 2�3-dimensional quotient of A(SLq(2)) modulo
the relations

a2� = 1 = d2� b� = 0 = c�. (5)

Note that the classical subgroup of F̂ is the cyclic group Z2�. This group ‘combines’ the cyclic
subgroup Z� of F with Z2 appearing in the classical spin cover. In fact, one has the exact
sequence of groups

0 −→ Z2 −→ Z2� −→ Z� −→ 0 (6)

which extends Z� by the kernel Z2 of the classical spin cover. Note that this extension is a
direct product of groups for odd �, while it is not even a semidirect product for even �.



3832 L Da̧browski and C Reina

2.3. Quantum group covering of SL(2)

The Hopf subalgebra of A(SLq(2)) generated by the �th powers

α = al β = bl γ = cl δ = dl

is isomorphic to the (commutative) Hopf algebra

A(SL(2)) = C[α, β, γ, δ]/〈αδ − βγ − 1〉
with the restricted coproduct, counit and coinverse. It is just the subalgebra of coinvariants of
the coaction of A(F) (as a quotient Hopf algebra). It is known [2] (see also [7] for the case
� = 3) that

Proposition 2.2. The sequence of algebras

A(SL(2)) −→ A(SLq(2))
πF−→ A(F) (7)

is

(i) a (right, faithfully flat) Hopf–Galois extension of A(SL(2) by A(F) (quantum principal
fibre bundle),

(ii) a principal homogeneous Hopf–Galois extension (i.e. A(F) is a quotient of the Hopf
algebra A(SLq(2)) by a Hopf ideal and πF is the canonical surjection),

(iii) strictly exact (quantum quotient group).

(Note that (iii) ⇒ (ii) ⇒ (i), see [26, 28, 29] for the relevant definitions.)
Therefore, (7) is a good candidate for a quantum covering of the spin group. To be fully

worthy of this name, it would be better nontrivial. It can be seen that it is not totally trivial in
the sense that A(SLq(2)) is not isomorphic to A(SL(2)) ⊗ A(F). Another accepted notion to
substitute the triviality for quantum principal bundles is however that of cleftness (or crossed
products), cf, e.g., [7]. It is not yet known if (7) is cleft and it seems to be a tough problem,
which is not tractable by the usual means (e.g., the theory of quantum characteristic classes). A
weaker result affirms that A(SLq(2)) as a module over A(SL(2)), which is finitely generated
and projective (cf [11]), is actually free [9]. (The associated coherent sheaf of rank l3 is free
and the corresponding vector bundle F over SL(2) turns out to be trivial.) Moreover a set of
l3 generators can be chosen as [9]

ambncs ′
bncs ′′

dr

with the integers m,n, r, s ′, s ′′ in the range m ∈ {1, . . . , � − 1}, n, r ∈ {0, . . . , � − 1},
s′ ∈ {m, . . . , � − 1} and s′′ ∈ {0, . . . , � − r − 1}.

We expect that the quantum principal bundle (7) is actually noncleft and propose to employ
it for a quantum spin covering in the next section.

2.4. Quantum group covering of SO(3, C)

The (complex) group SL(2) is isomorphic to the spin group Spin(3, C) and thus provides
a twofold covering of the (complex) rotation group SO(3, C). This classical spin covering
can be combined with the covering (7) as follows. The Hopf algebra A(SO(3, C)) can be
identified with the subalgebra of even polynomials A+(SL(2)) in A(SL(2)). It can be seen
that A+(SL(2)) coincides with the coinvariants of the coaction of Hopf algebra A(F̂ ). Let πF̂

denote the canonical projection and t̂ := πF̂ (t). In analogy with the proof of proposition 2.2,
it can be shown that
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Proposition 2.3. The sequence of Hopf algebras

A(SO(3, C)) −→ A(SLq(2))
πF̂−→ A(F̂ ) (8)

possesses the same nice properties (i)–(iii) as the sequence (7).

In particular, (8) is a quantum principal bundle and referring to our remarks at the end of the
previous subsection, we mention that it is very likely noncleft. In fact, the relevant question
about (8) is whether it is reducible to the subgroup Z2. We expect that it is not the case,
consistently with our conjecture about the noncleftness of (7) and thus propose the following
definition.

Definition. For any odd �, � � 3, with q = e
2π i
� , we call the principal fibre bundle (8) quantum

spin covering of the complex rotation group.

3. Irreducible corepresentations

There are two natural series of corepresentations of A(SLq(2)). The first one comes by
restricting the coproduct to Wn = C{αn, αn−1γ, . . . , γ n}, i.e. the span of monomials of degree
n in α = a� and γ = c�. The corepresentation Wn is a ‘push forward’ of the usual (n + 1)-
dimensional (spin n/2) corepresentations of A(SL(2)) and thus it is obviously irreducible for
all n ∈ N. The second one comes by restricting the coproduct to Ym = C{am, am−1c, . . . , cm},
i.e. the span of monomials of degree m in a, c. More explicitly,

�am−hch =
m−h∑
r=1

h∑
s=1

q−r(h−s)

(
m − h

r

)
q−2

(
h

s

)
q−2

am−h−rbrch−sds ⊗ am−(r+s)cr+s

=
m∑

k=0

( ∑
r+s=k

q−r(h−s)

(
m − h

r

)
q−2

(
h

s

)
q−2

am−h−rbrch−sds

)
⊗ am−kck (9)

where(
k

j

)
p

= (k)!p
(k − j)!p(j)!p

(k)!p = (k)p(k − 1)p · · · (2)p and

(k)p = 1 + p + · · · + pk−1.

It is indecomposable but not irreducible in general. We shall see that, for m ∈ {0, 1, . . . , �−1},
Ym is indeed irreducible and we shall denote it byVm. Also, for m = n� − 1, n ∈ Z+, it is
irreducible but in fact equivalent to Wn−1 ⊗V�−1. More generally, the corepresentations of the
form Wn ⊗ Vm, with n ∈ N,m ∈ {0, 1, . . . , � − 1} are all irreducible as can be inferred from
[10, 11], establishing the duality with a version [12] of divided powers algebra [20, 21] of which
the classification of irreducible representations is known [20]. Although straightforward, here
we provide a direct computational proof.

Proposition 3.1. Set m = m0 + �m1, with 0 � m0 � � − 1,m1 � 0.

(a) For m1 = 0 the comodule Vm0 := Ym0 is irreducible.
(a)′ For every m1 > 0, the comodule Y�−1+�m1 (i.e. when m0 = � − 1) is irreducible as well

and it is isomorphic to Wm1 ⊗ V�−1.
(b) When 0 � m0 � � − 2 and m1 � 1, Ym0+�m1 has a (maximal) subcomodule isomorphic to

Wm1 ⊗ Vm0 . The quotient comodule is irreducible and isomorphic to Wm1−1 ⊗ V�−2−m0 .
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Corollary. The corepresentations Wn ⊗ Vm are irreducible for all n ∈ N and m ∈
{0, 1, . . . , � − 1}.
Proof of proposition 3.1. The classical argument working for q = 1 can be directly extended
when q is considered as an indeterminate and runs as follows. Given a corepresentation ρ of
a Hopf algebra A on a comodule U, let ρ

j

i be a matrix of elements of A such that

ui 
→ ρ
j

i ⊗ uj

with respect to a basis ui (i = 1, . . . , n) of U. There exists a coinvariant subcomodule U ′ ⊂ U

(with dim U ′ = k, say) iff up to a conjugation by an invertible matrix Z with elements in
C[q, q−1] the matrix ρ takes a lower echelon form, i.e. iff(

τ1 0
τ3 τ4

) (
z1 z2

z3 z4

)
=

(
z1 z2

z3 z4

) (
ρ1 ρ2

ρ3 ρ4

)

where U ′ is the span of the first k elements of the transformed basis and the block decomposition
is given by the splitting U = U ′ ⊕ U/U ′. In particular, this requires that

τ1(z1 z2) = (z1ρ1 + z2ρ3 z1ρ2 + z2ρ4).

Note that the k × n matrix ( z1 z2 ) has rank k. Let M be an invertible k × k submatrix. We
can write

τ1M = S τ1M
′ = S′

where on the rhs S is the submatrix corresponding to the columns of M in ( z1 z2 ) and a prime
denotes the submatrix with the complementary columns. Substituting, we get k × (n − k)

linear relations over C[q, q−1] among the elements ρ
j

i ,

S′ = SM−1M ′.

Now let us have a closer look at the comodules Ym. The matrix elements of (9) are linear
combinations of monomials of degree m in the generators a, b, c, d . For generic q, all
(m + 3)(m + 2)(m + 1)/6 of them appear in the sum on the rhs of (9) and every monomial
appears exactly in a single matrix element, i.e. two different matrix elements contain different
monomials. Therefore, they are all linearly independent and, from the above argument, Ym

are irreducible.
Recall that when q = λ is an �th root of unity, λ� = 1, the subalgebra generated by

α = a�, β = b�, γ = c�, δ = d� is central and isomorphic to the classical Hopf algebra
A(SL(2)). Now several q−2-binomial coefficients actually vanish when evaluated at λ. A
simple way to control this is to use the fact that the coproduct is an algebra homomorphism

�am = �αm1�am0

where m = m0 + �m1. Hence
m∑

r=0

(
m

r

)
λ−2

am−rbr ⊗ am−r cr

=
m1∑
i=0

m0∑
j=0

(
m0

j

)
λ−2

(
m1

i

)
1
αm1−iβiam0−j bj ⊗ αm1−iγ iam0−j cj

giving the factorization formula (cf [20])(
m

r

)
λ−2

=
(

m0

r0

)
λ−2

(
m1

r1

)
(10)
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where m = m0 + �m1, r = r0 + �r1, 0 � m0, r0 � � − 1,m1, r1 � 0 and the last factor on the
rhs is just the ordinary binomial coefficient. In particular, all the binomial coefficients

(
m

r

)
λ−2

with r0 > m0 vanish.
When 0 � m = m0 � � − 1, this cannot occur and the standard argument above yields

point (a). For larger m, however, the comodule Ym is no longer irreducible. Using again the
homomorphism property of the coproduct, we directly compute

�(am−hch) = �(α(m−h)1γ h1)

(m−h)0∑
j=0

h0∑
t=0

λ−j (h0−t)

(
(m−h)0

j

)
λ−2

(
h0

t

)
λ−2

× a(m−h)0−j bj ch0−t dt ⊗ a(m−h)0+h0−(j+t)cj+t .

Note that

m − h =
{
�(m1 − h1) + (m0 − h0) if 0 � h0 � m0

�(m1 − h1 − 1) + (� + m0 − h0) if m0 + 1 � h0 � � − 1

and the above formula for h0 � m0 reads

�(am−hch) = �(αm1−h1γ h1)

m0−h0∑
j=0

h0∑
t=0

λ−j (h0−t)

(
m0 − h0

j

)
λ−2

(
h0

t

)
λ−2

× am0−h0−j bjch0−t dt ⊗ am0−(j+t)cj+t . (11)

This sum contains only monomials in a, c of degree m0. So Wm1 ⊗ Vm0 is an irreducible
subcomodule. If m0 = � − 1, this is isomorphic to the whole of Y�−1+�m1 . This proves
point (a′) and the first statement of point (b). To complete the proof of (b) note that for
m0 + 1 � h0 � � − 1, we have

�(am−hch) = �(αm1−h1−1γ h1)

�+m0−h0∑
j=0

h0∑
t=0

λ−j (h0−t)

(
� + m0 − h0

j

)
λ−2

(
h0

t

)
λ−2

× a�+m0−h0−j bjch0−t dt ⊗ a�+m0−(j+t)cj+t .

Restricting the sum to j + t � m0 we can factor a� = α, while restricting to j + t � � we can
factor c� = γ , thus compensating the −1 occurring in the exponent of the classical part of the
coproduct and leaving in these two partial sums only monomials of degree m0 in a, c. This
cannot be done in the partial sum for m0 + 1 � j + t � l − 1, which gives

l−1∑
k=m0

k∑
s=0

· · · al+m0−h0−k+sbk−sch0−sds ⊗ al+m0−kck

=
l−m0−2∑

k′=0

m0+1+k′∑
s

· · · am′
0−h′

0−k′+sbm0+1+k′−scm0+1+h′
0−t dt ⊗ (ac)m0+1am′

0−k′
ck′

= λn[(bc)m0+1 ⊗ (ac)m0+1]�am′
0−h′

0ch′
0

where m′
0 = l − m0 − 2, h′

0 = h0 + m0 + 1. This expression contains monomials of degree
larger than m0. Thus the quotient Ym/Wm1 ⊗ Vm0 is isomorphic to Wm1−1 ⊗ V�−2−m0 which
completes the proof. �

We remark that the proof for generic q is just the q-analogue of what happens in the
classical case. It is enough to note that replacing the ordinary binomial coefficients by their
q-analogue one gets (9) up to some nonvanishing factors. This is why the corepresentation
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theory for generic q is the same as the classical one. In particular, the above argument yields
that the Clebsch–Gordan decomposition holds as in the classical case

Ym ⊗ Ym′ = Ym+m′ ⊕ Ym+m′−2 ⊕ · · · ⊕ Y|m−m′ |.

In the case of q being �th root of unity, it follows from proposition 3.1 that there is always
at least one irreducible corepresentation of arbitrary dimension D, and there are more (up to
�) of them, depending on how many integers in {1, . . . , �} divide D.

The decomposition rules of the tensor products (Wn ⊗Vm)⊗ (Wn′ ⊗Vm′) into irreducible
corepresentations follow from the usual Clebsch–Gordan decomposition of Wn ⊗ Wn′ and the
decomposition of Vm ⊗ Vm′ , which obeys a more complicated pattern.

3.1. Decomposition of tensor products for � = 3

The previous discussion can be specified and simplified considerably in the simplest
(nontrivial) case � = 3. We have explicitly the following matrices ρ of three corepresentations
V0, V1 and V2, respectively,

1,

(
a b

c d

)
and

(
a2 −q2ab b2

ac ad + q−1bc bd

c2 −q2cd d2

)

as well as the usual form of Wn.
According to the corollary of proposition 3.1, we see that there is one trivial (one-

dimensional, irreducible) corepresentation V0 = W0. In dimension 2 there are two
(inequivalent) irreducible corepresentations V1 and W1. In dimension 3 there are also two:
V2 and W2. In dimension 4, Y3 is indecomposable but not irreducible but there are two other
irreducible corepresentations W3 ⊗ V0 = W3 and W1 ⊗ V1. In dimension 5 there is only one
irreducible corepresentation W4 (Y4 is indecomposable but not irreducible). In dimension 6
there are three irreducible corepresentations: W5,W2 ⊗ V1 and W1 ⊗ V2 = V5. A general
pattern is that in any dimension D there is always at least one irreducible corepresentation, if
either 2 or 3 divides d, there are two irreducible corepresentations and if 6 divides D, there are
three irreducible corepresentations.

We now give the decomposition rules of the tensor products.
Clearly,

V0 ⊗ V0 = V0 V0 ⊗ V1 = V1 and V0 ⊗ V2 = V2.

Next, it can be seen that

V1 ⊗ V1 = V0 ⊕ V2 V1 ⊗ V2 = V1 
 W1 
 V1 and

V2 ⊗ V2 = V0 
 V2 
 (W1 ⊕ V1) 
 V0

where 
 in an indecomposable corepresentation indicates that the left summand is a
subcomodule while the right summand is a comodule after quotienting the left one. Noting
that the tensor products in the opposite order decompose equivalently, and recalling the usual
decomposition Wn ⊗ Wn′ = W|n−n′| ⊕ W|n−n′|+2 ⊕ · · · ⊕ W|n+n′|, these rules permit us to find a
decomposition of tensor products of any number of Vm ⊗ Wn, with n ∈ N and m ∈ {1, 2, 3}.

An interesting question in this simplest (nontrivial) case of � = 3 is whether there is a
possibility of building the fundamental spinor corepresentation W1 out of three copies of V1

or V2. The decomposition rules permit us to verify easily that the corepresentations (V1)
⊗3

and (V2)
⊗3 do not contain W1 as a subcorepresentation and the same is true for the tensor cube
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of the irreducible corepresentations (Vm ⊗ Wn) if m ∈ {1, 2}. They do however contain W1

as a quotient (sub)corepresentation. It is also worth mentioning that the fundamental spinor
W1 subcorepresentation occurs nevertheless in, e.g., the reducible but not decomposable
representation Y3 and thus also in its third tensor power (Y3)

⊗3.

4. Braiding

For general q the quasitriangular structure on Uq(sl(2)) given by the well-known universal
element R [14] in (a suitable completion of) Uq(sl(2))⊗2, defines a coquasitriangular structure
on A(SLq(2)). Its explicit form on the generators reads (cf [17])

R




a ⊗ a a ⊗ b a ⊗ c a ⊗ d

b ⊗ a b ⊗ b b ⊗ c b ⊗ d

c ⊗ a c ⊗ b c ⊗ c c ⊗ d

d ⊗ a d ⊗ b d ⊗ c d ⊗ d


 =




q−1/2 0 0 q1/2

0 0 q−1/2 − q3/2 0
0 0 0 0

q1/2 0 0 q−1/2


 . (12)

This structure provides a highly unusual (nonsymmetric and nondiagonal) braiding of
corepresentations ρ and ρ ′ of A(SLq(2))

�(ui ⊗ u′
r ) =

∑
j,s

R
(
ρ ′s

r ⊗ ρ
j

i

)
u′

s ⊗ uj . (13)

In our situation, q� = 1, it is not difficult however to verify that the corepresentations Wn for
n odd (i.e. with half-integer spin n/2) are fermionic and the corepresentations Wn for n even
(i.e. with integer spin n/2) are bosonic, i.e. they obey

�(w ⊗ w′) = (−1)nn′
w′ ⊗ w for w ∈ Wn w′ ∈ Wn′ . (14)

Thus the exotic coquasitriangular structure R passes an important consistency test of the
agreement with the usual spin–statistics relation in dimensions d � 3. The braiding of V and
W is also quite simple:

�(v ⊗ w) = (−1)mnw ⊗ v for v ∈ Vm w ∈ Wn. (15)

Instead, the braiding of V among themselves is highly exotic (even comparing with the anyonic
one). We report it in subsection 4.1 for the case � = 3. Clearly the tensor products Vm ⊗ Wn

carry the combined statistics according to the usual hexagon conditions for � (see, e.g., [23]).

4.1. Braiding in the case � = 3

As for general �, the braiding of the corepresentations Wn with W ′
n is exactly the classical one,

i.e. the trivial twist except when nn′ is odd when it is (-) the twist. Also, Wn have the trivial
braiding with V0 and with V2 and (-) the twist with V1. The braiding of V among themselves
is as follows.

The braiding of V1 and V1 reads

�




a ⊗ a

a ⊗ c

c ⊗ a

c ⊗ c


 =




q−1/2 0 0 0
0 0 q1/2 0
0 q1/2 1+q−1/2 0
0 0 0 q−1/2







a ⊗ a

a ⊗ c

c ⊗ a

c ⊗ c


 . (16)
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(Note that � has a nonsimple tensor a ⊗ c − qc ⊗ a as an eigenvector with eigenvalue 1 and
the complex span of a ⊗ a, qa ⊗ c + c ⊗ a, c ⊗ c as an eigenspace with eigenvalue q−1/2.)
Next, the braiding of V1 and V2 reads

�




a2 ⊗ a

a2 ⊗ c

ac ⊗ a

ac ⊗ c

c2 ⊗ a

c2 ⊗ c


 =




q2 0 0 0 0 0
0 0 0 q 0 0
0 1 0 q2−q 0 0
0 0 0 0 1 0
0 0 q 0 1−q 0
0 0 0 0 0 q2







a ⊗ a2

a ⊗ ac

a ⊗ c2

c ⊗ a2

c ⊗ ac

c ⊗ c2


 . (17)

The opposite braiding of V2 and V1 reads

�




a ⊗ a2

a ⊗ ac

a ⊗ c2

c ⊗ a2

c ⊗ ac

c ⊗ c2


 =




q2 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 q 0
0 q q−q2 0 0 0
0 0 0 1 1−q2 0
0 0 0 0 0 q2







a2 ⊗ a

a2 ⊗ c

ac ⊗ a

ac ⊗ c

c2 ⊗ a

c2 ⊗ c


 . (18)

Finally, the braiding of V2 and V2 reads

�




a2 ⊗ a2

a2 ⊗ ac

a2 ⊗ c2

ac ⊗ a2

ac ⊗ ac

ac ⊗ c2

c2 ⊗ a2

c2 ⊗ ac

c2 ⊗ c2




=




q 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 q 0 0
0 1 0 1−q 0 0 0 0 0
0 0 0 0 1 0 1−q2 0 0
0 0 0 0 0 0 0 1 0
0 0 q2 0 q−1 0 −(q−1)2 0 0
0 0 0 0 0 1 0 1−q 0
0 0 0 0 0 0 0 0 q2







a2 ⊗ a2

a2 ⊗ ac

a2 ⊗ c2

ac ⊗ a2

ac ⊗ ac

ac ⊗ c2

c2 ⊗ a2

c2 ⊗ ac

c2 ⊗ c2




.

(19)

The resulting braiding of the irreducible corepresentations Wn ⊗ Vm and Wn′ ⊗ Vm′ can be
obtained from the above braidings of V and W using the hexagon conditions for braiding.

5. Final remarks

We remark in connection with point (iii) of proposition 2.1 that Mat(3, C) occurs as a direct
summand of Connes’ interior algebra A for the standard model [4]. Also, the algebra
M(3, C) ⊕ M(2, C) ⊕ C, close to A, coincides with the semisimple part of the algebra
Uq(sl(2)) at cubic roots of unity, which was extensively studied (cf [6, 8, 18] and references
therein).

We also mention some related works. In [22] the braided group B(SLq(2)) with
the braiding induced by the universal R-matrix via the right adjoint corepresentation has
been described. In [13] the fractional supersymmetry has been discussed. The interesting
papers [24, 25] investigated the spin–statistics relation in the supergroup framework and its
bosonization to an (ordinary) Hopf algebra. In [16] the noncommutative cohomology and
electromagnetism on SLq(2) at roots of unity have been studied.

We summarize our work by saying that in noncommutative geometry the spin and the
statistics in dimensions �3 look more similar to the case of dimension 2. In fact, to the best
of our knowledge, besides the parafermion case, it opens a possibility of unusual statistics in
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quantum theories in dimension �3. It is however quite encouraging that the corepresentations
Wn of the usual Spin(3, C) maintain their Bose–Fermi statistics in agreement with the usual
spin–statistics theorem in (local) relativistic quantum field theory.

There are some open problems regarding the noncommutative spin covers. From
the mathematical point of view certainly the question about the cleftness of (7) and the
(non)reducibility of (8) to Z2 should be settled. Also the issue of reality or ∗-structure and
the reductions to SU(2) and SO(3) are very important. Of course the covers of relativistic
symmetries (Lorentz and Poincaré) should then be worked out as well. Another task is to
employ the quantum covers as structure groups for bundles on (classical or quantum) spaces.
These and related topics are currently under investigation.

From the physical point of view, besides the hypothetical relation with quantum
symmetries behind the standard model, the main question concerns a possible role of the
quantum covers of spin, e.g., in local quantum field theory. Indeed from the discussion above
we see that there is an interesting mixing up between the exotic statistics of V and spin. This
may be a key test for physical applications. Also the use in physics of the indecomposable
corepresentations, their irreducible subcomodules and their quotients require further study.
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